Developing a machine learning model for bleeding prediction in patients with cancer-associated thrombosis receiving anticoagulation therapy

Abstract

Only 1 conventional score is available for assessing bleeding risk in patients with cancer-associated thrombosis (CAT) the CAT-BLEED score. Our aim was to develop a machine learning-based risk assessment model for predicting bleeding in CAT and to evaluate its predictive performance in comparison to that of the CAT-BLEED score. We collected 488 attributes (clinical data, biochemistry, and International Classification of Diseases, 10th Revision, diagnosis) in 1080 unique patients with CAT. We compared CAT-BLEED score, Ridge and Lasso logistic regression, random forest, and Extreme Gradient Boosting (XGBoost) algorithms for predicting major bleeding or clinically relevant nonmajor bleeding occurring 1 to 90 days, 1 to 365 days, and 90 to 455 days after venous thromboembolism (VTE). The predictive performances of Lasso logistic regression, random forest, and XGBoost were higher than that of the CAT-BLEED score in the prediction of bleeding occurring 1 to 90 days and 1 to 365 days after VTE. For predicting major bleeding or clinically relevant nonmajor bleeding 1 to 90 days after VTE, the CAT-BLEED score achieved a mean area under the receiver operating characteristic curve (AUROC) of 0.48 ± 0.13, while Lasso logistic regression and XGBoost both achieved AUROCs of 0.64 ± 0.12. For predicting bleeding 1 to 365 days after VTE, the CAT-BLEED score achieved a mean AUROC of 0.47 ± 0.08, while Lasso logistic regression and XGBoost achieved AUROCs of 0.64 ± 0.08 and 0.59 ± 0.08, respectively. This is the first machine learning-based risk model for bleeding prediction in patients with CAT receiving anticoagulation therapy. Its predictive performance was higher than that of the conventional CAT-BLEED score. With further development, this novel algorithm might enable clinicians to perform personalized anticoagulation strategies with improved clinical outcomes.

Publication
In Journal of Thrombosis and Haemostasis
Sandro Radovanović
Sandro Radovanović
Assistant Professor at University of Belgrade

My research interests include machine learning, development and design of decision support systems, decision theory, and fairness and justice concepts in algorithmic decision making.